UNDECIDABLE PROBLEMS (UNSOLVABLE PROBLEMS)

1

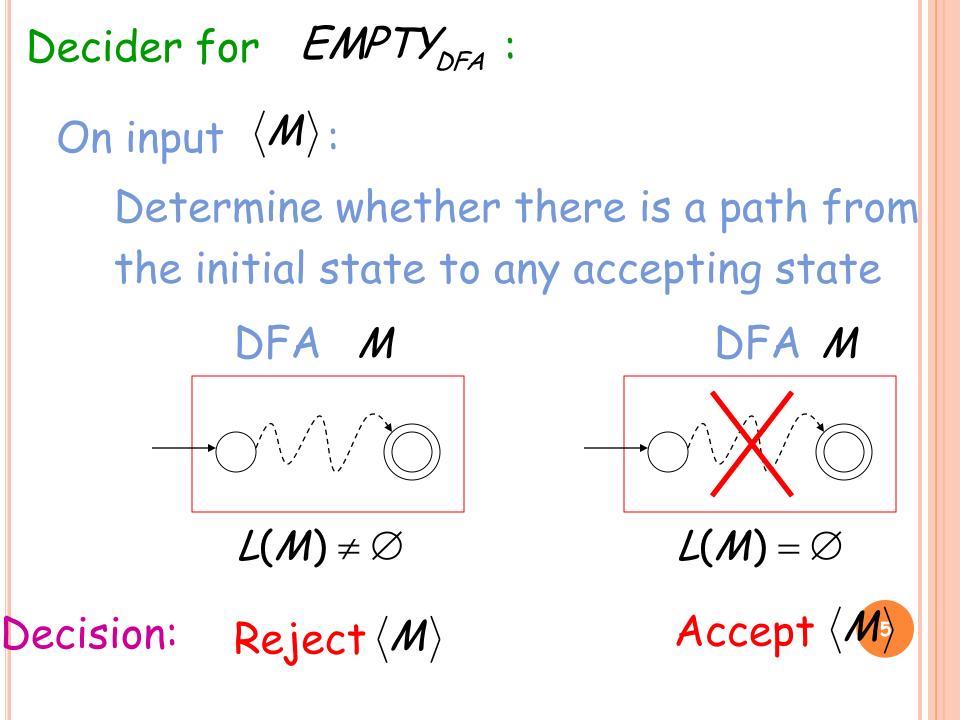
Decidable Languages Recall that: A language A is decidable, if there is a Turing machine M(decider)that accepts the language A and halts on every input string Decision On Halt: Turing Machine M YES Accept Input ecider for A string Reie

A computational problem is decidable if the corresponding language is decidable

We also say that the problem is solvable

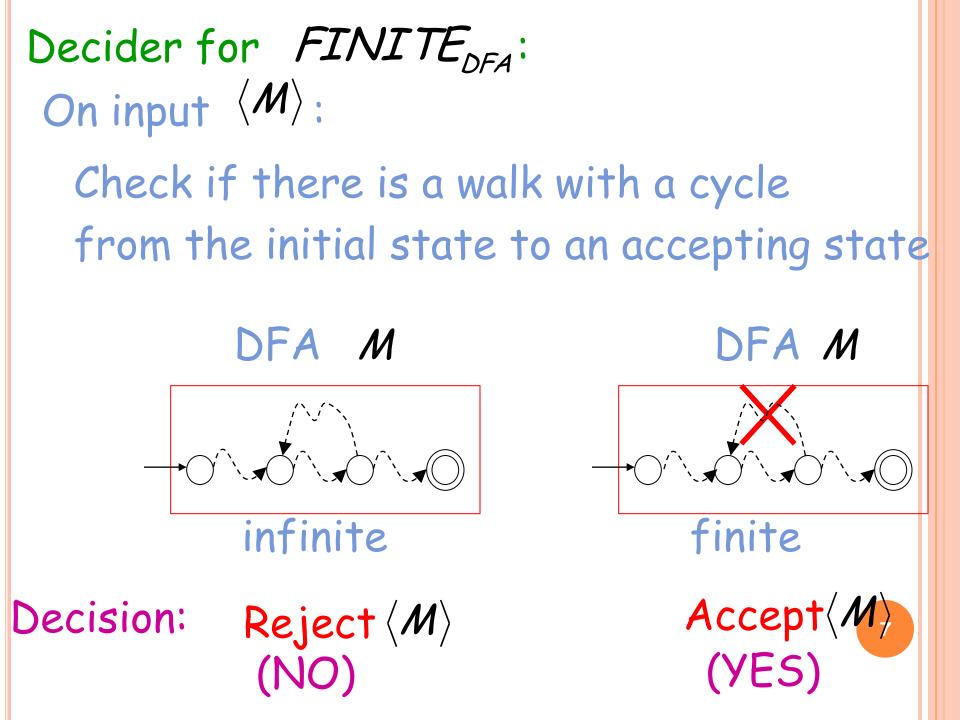
Problem: Does DFA *M* accept the empty language $L(M) = \emptyset$?

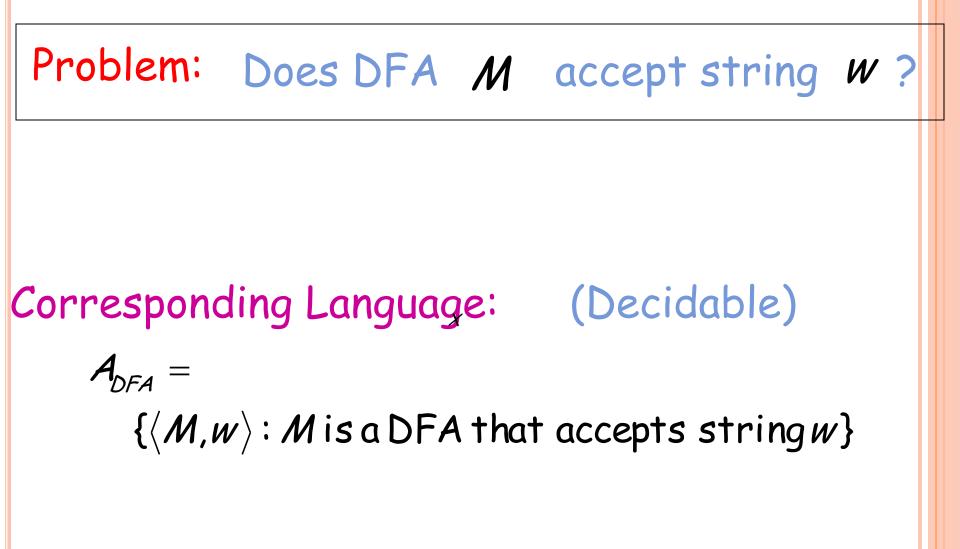
(Decidable) Corresponding Language: $EMPTY_{DFA} =$ $\{\langle M \rangle : M \text{ is a DFA that accepts empty language } \emptyset\}$ Description of DFA M as a string (For example, we can represent M as a 4 binary string, as we did for Turing machines)



Problem: Does DFA M accept a finite language?

Corresponding Language:(Decidable) $FINITE_{DFA} =$ $\{\langle M \rangle : M \text{ is a DFA that accepts a finite language} \}$





On input string $\langle M, w \rangle$:

Run DFA M on input string W

If M accepts w<u>Then</u> accept $\langle M, w \rangle$ (and halt) <u>Else</u> reject $\langle M, w \rangle$ (and halt) **Problem:** Do DFAs M_1 and M_2 accept the same language?

Corresponding Language: (Decidable) $EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs that accept} \}$

Decider for EQUALDEA:

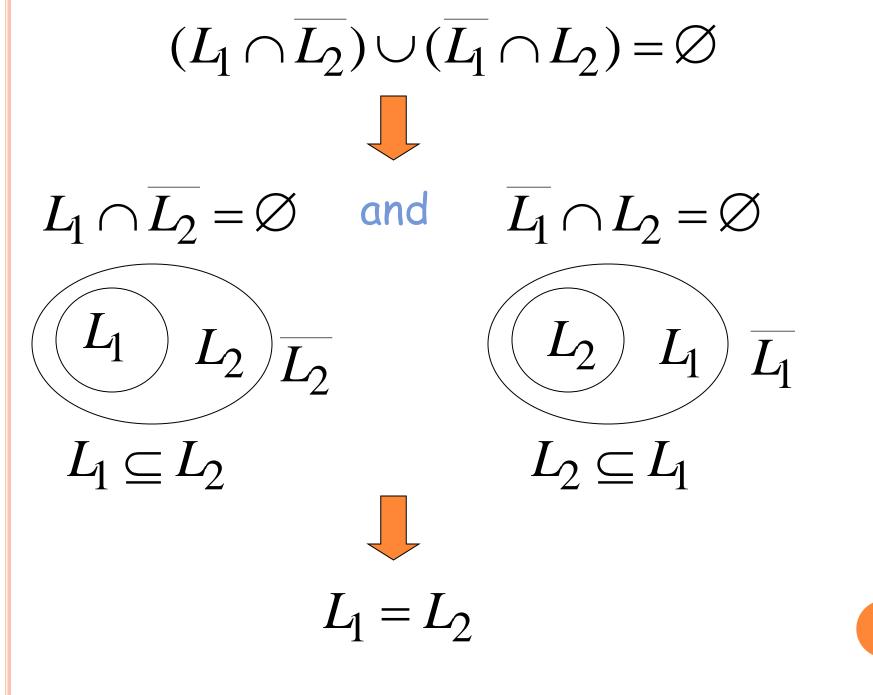
On input $\langle M_1, M_2 \rangle$:

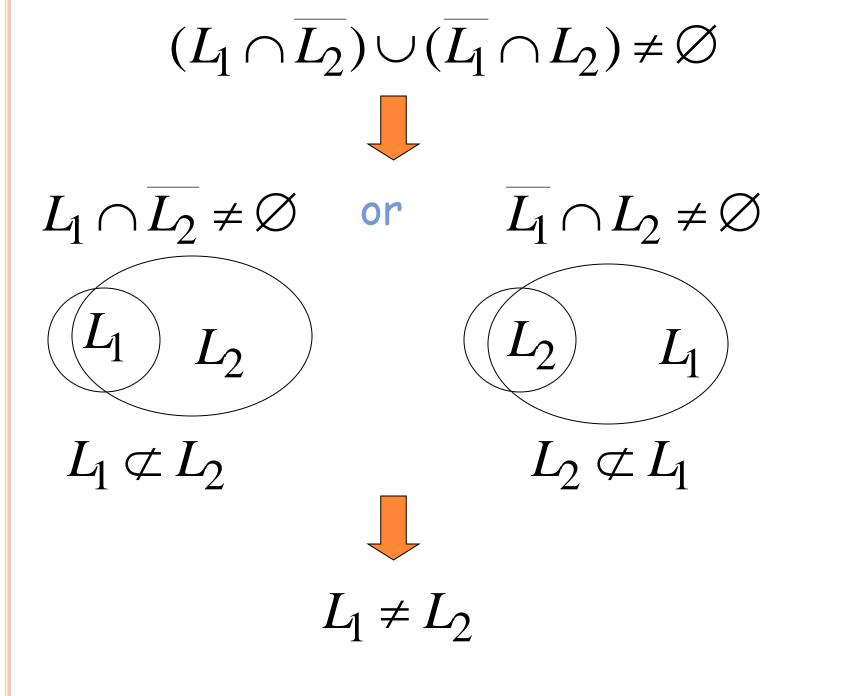
Let L_1 be the language of DFA M_1 Let L_2 be the language of DFA M_2

Construct DFA M such that:

 $L(M) = (\mathcal{L} \cap \mathcal{L}) \cup (\mathcal{L} \cap \mathcal{L})$

(combination of DFAs)





Therefore, we only need to determine whether

$$\mathcal{L}(\mathcal{M}) = (\mathcal{L}_1 \cap \overline{\mathcal{L}}_2) \cup (\overline{\mathcal{L}}_1 \cap \mathcal{L}_2) = \emptyset$$

which is a solvable problem for DFAs: *EMPTY_{DFA}*

UNDECIDABLE LANGUAGES undecidable language = not decidable language

There is no decider:

there is no Turing Machine which accepts the language and makes a decision (halts) for every input string

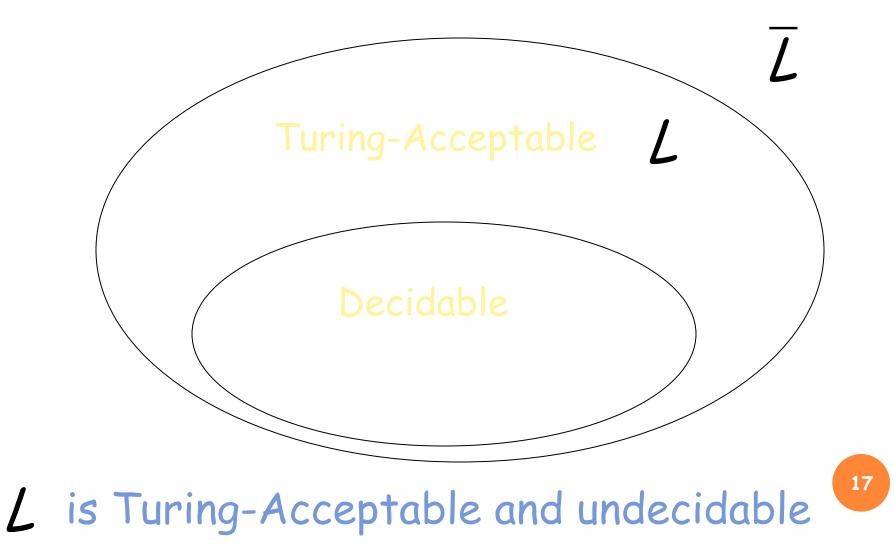
(machine may make decision for some input strings)

For an undecidable language, the corresponding problem is undecidable (unsolvable):

> there is no Turing Machine (Algorithm) that gives an answer (yes or no) for every input instance

(answer may be given for some input instances)

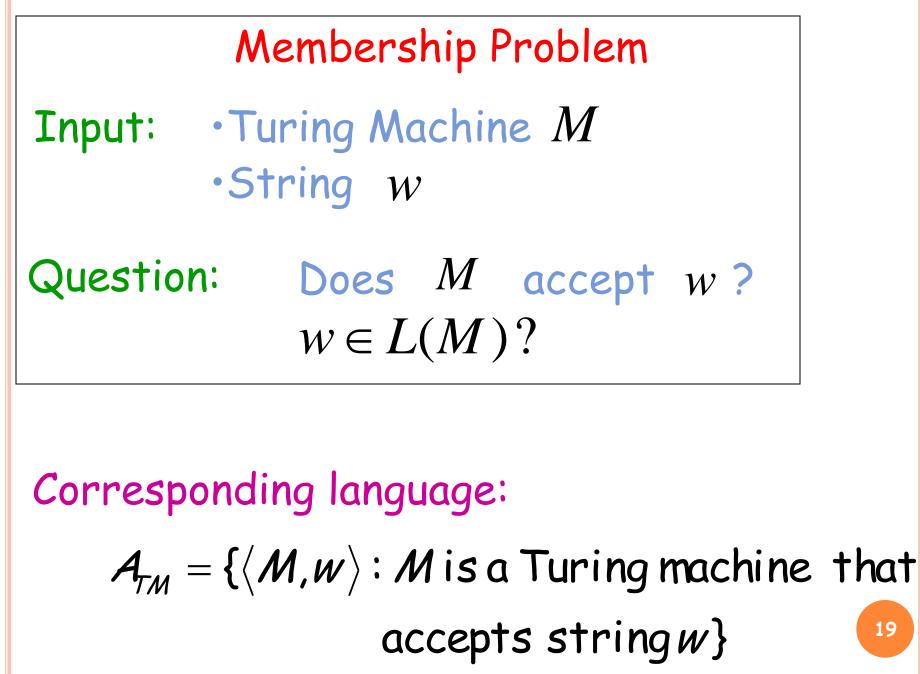
We have shown before that there are undecidable languages:



We will prove that two particular problems are unsolvable:

Membership problem

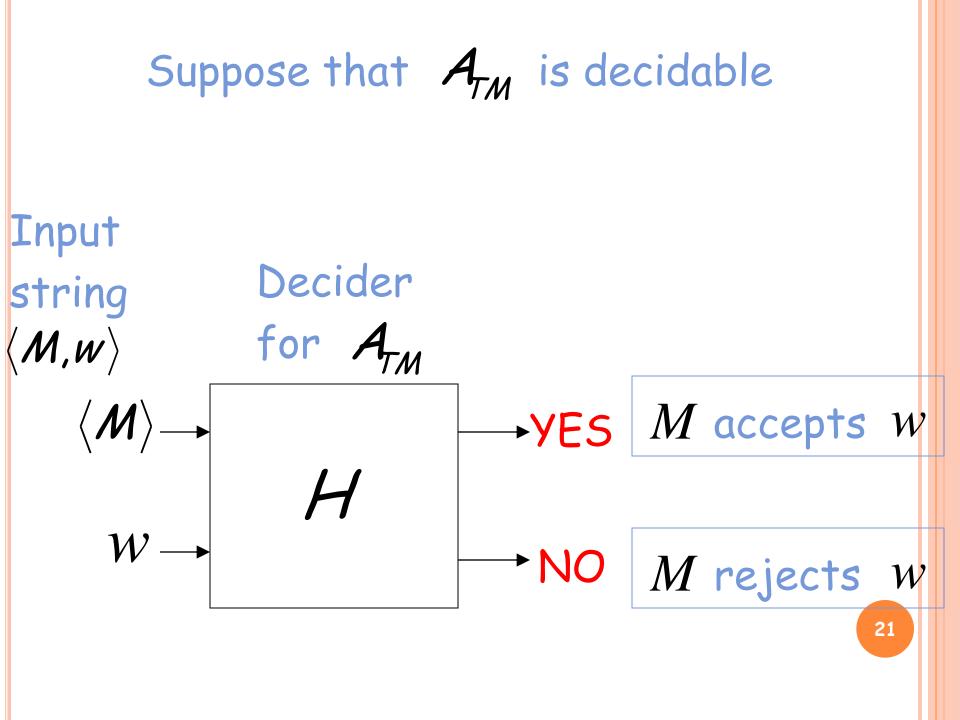
Halting problem



Theorem: A_{TM} is undecidable

(The membership problem is unsolvable)

Proof: **Basic** idea: We will assume that A_{TM} is decidable; We will then prove that every decidable language is Turing-Acceptable 20 A contradiction!

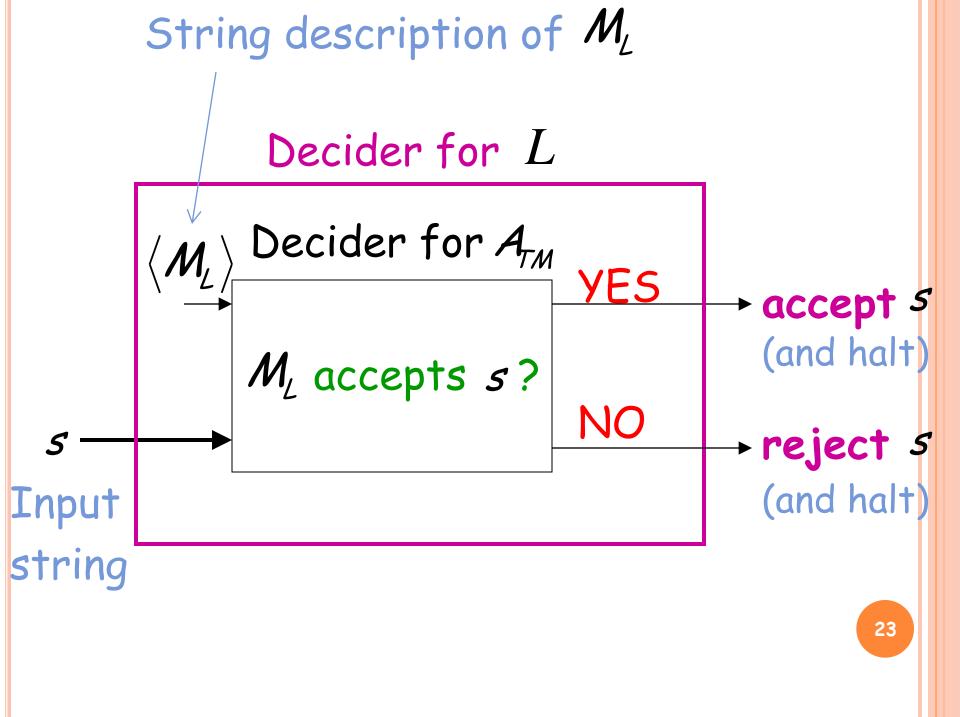


Let L be a Turing recognizable language

Let M_{μ} be the Turing Machine that accepts L

We will prove that L is also decidable:

we will build a decider for L

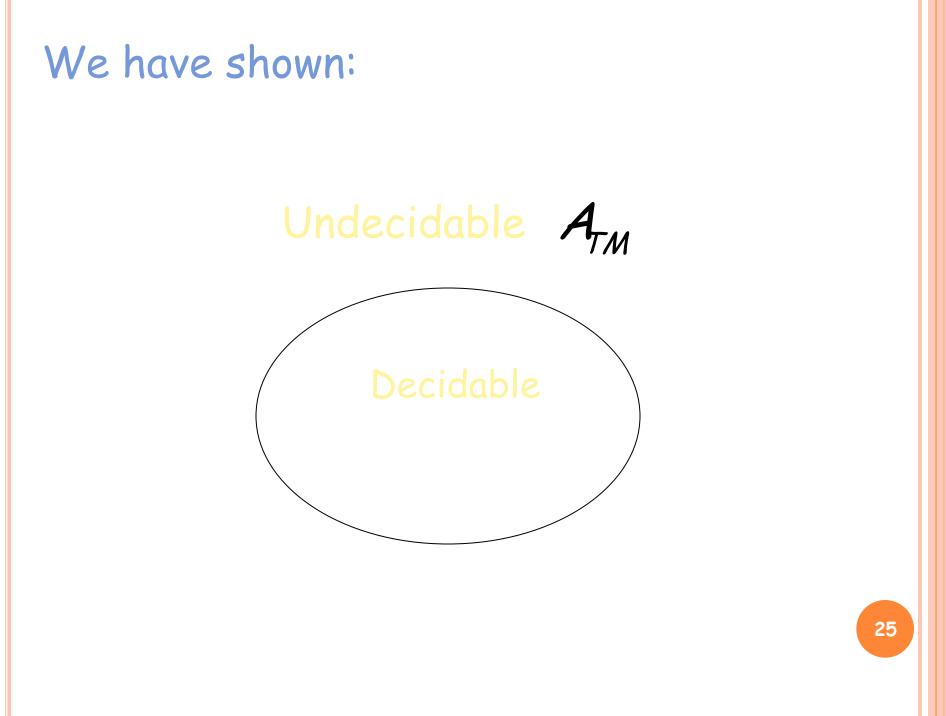


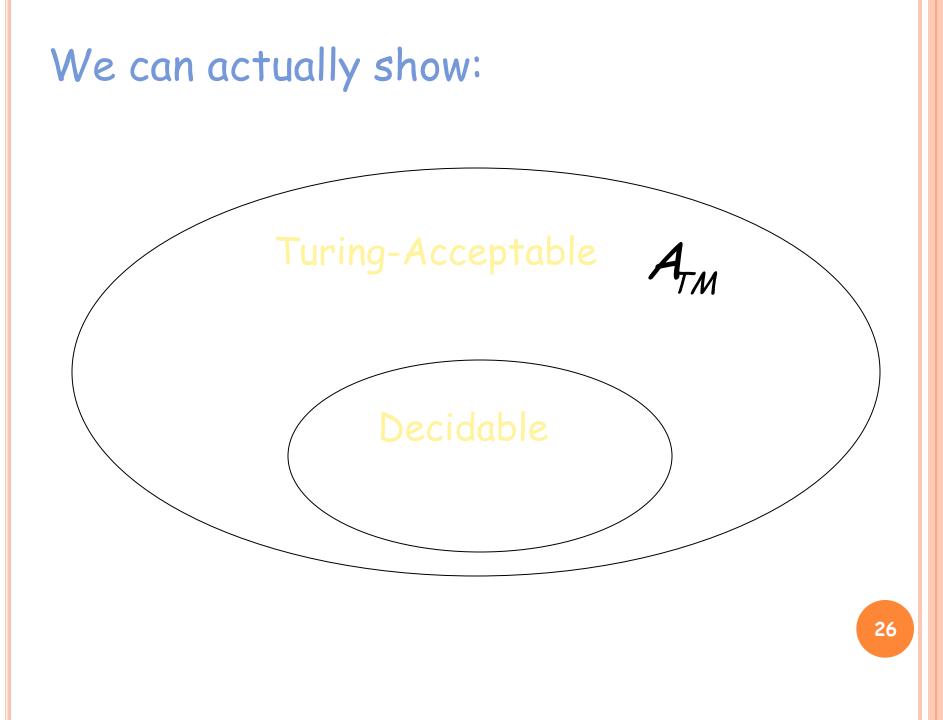
Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

Contradiction!!!!

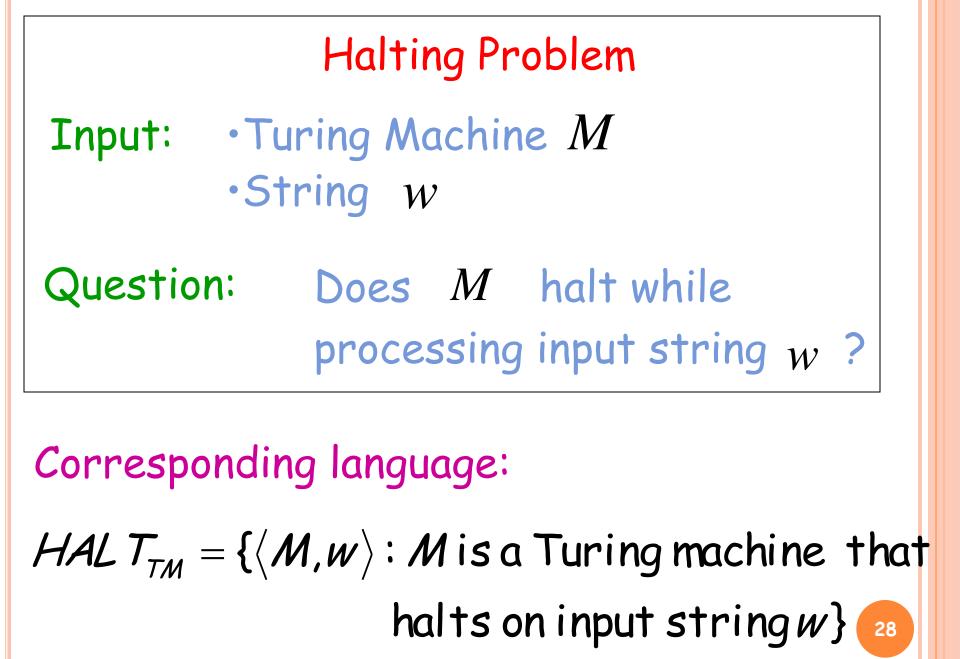




Turing machine that accepts A_{TM} :

1. Run M on input W

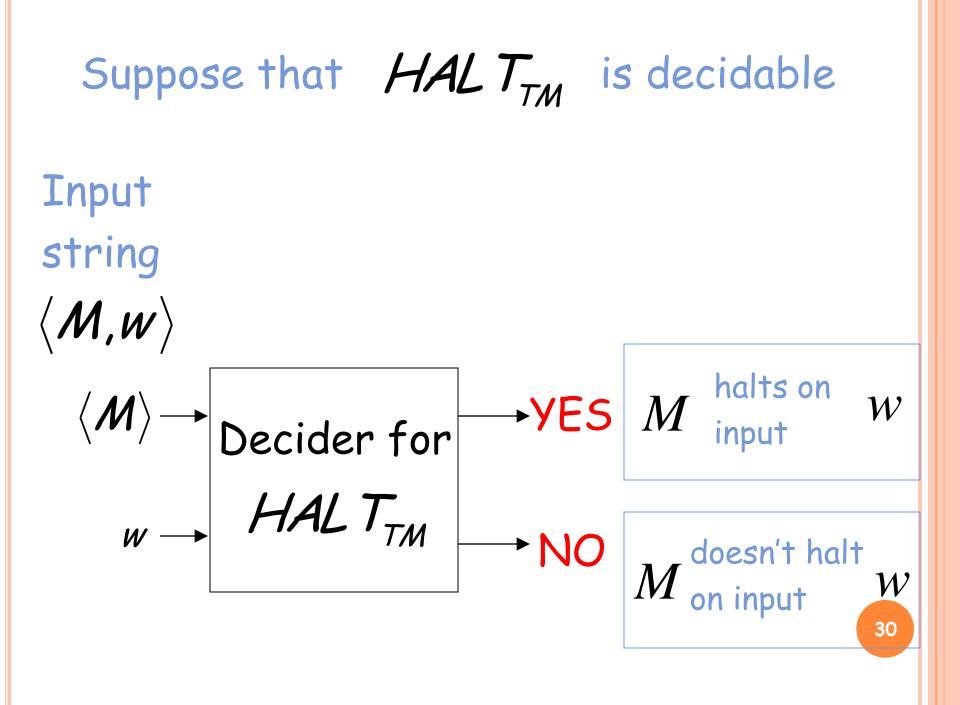
 $\langle M, w \rangle \longrightarrow$ 2. If M accepts Wthen accept $\langle M, w \rangle$



Theorem: $HALT_{TM}$ is undecidable

(The halting problem is unsolvable)

Proof: **Basic** idea: Suppose that $HALT_{TM}$ is decidable; we will prove that every decidable language is also Turing-Acceptable 29 A contradiction!

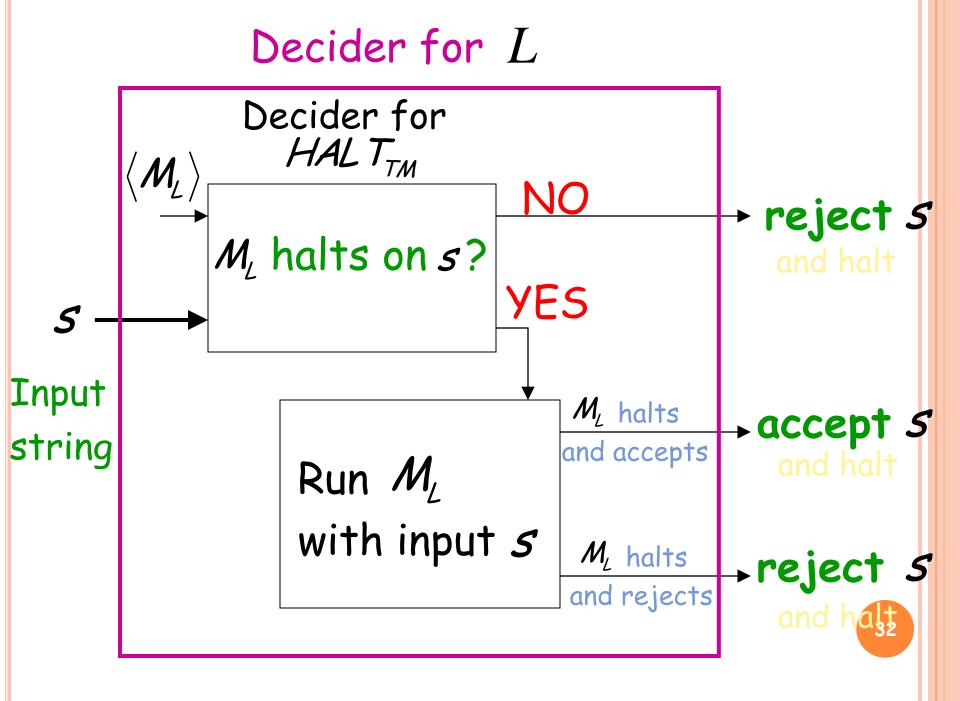


Let L be a Turing-Acceptable language

Let M_L be the Turing Machine that accepts L

We will prove that L is also decidable:

we will build a decider for L



Therefore, L is decidable

Since L is chosen arbitrarily, every Turing-Acceptable language is decidable

But there is a Turing-Acceptable language which is undecidable

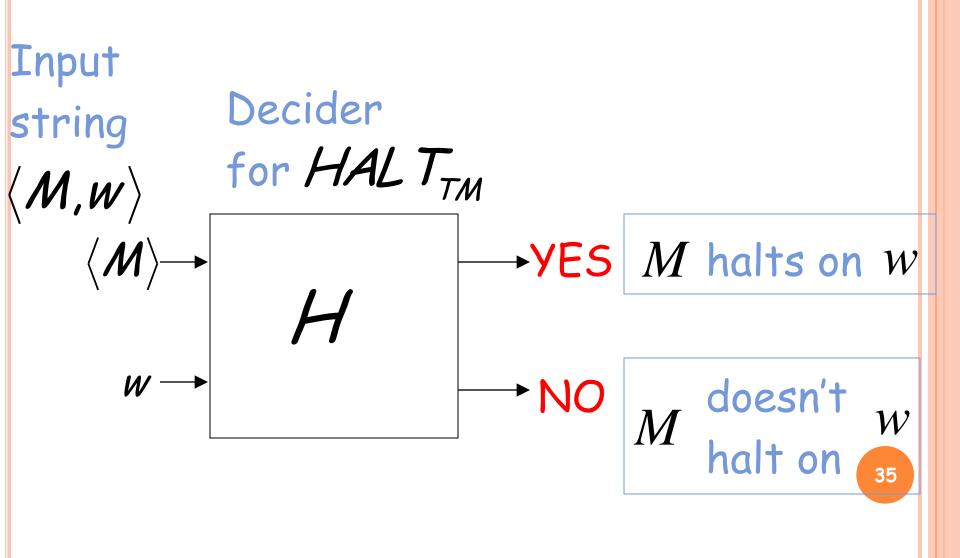
An alternative proof

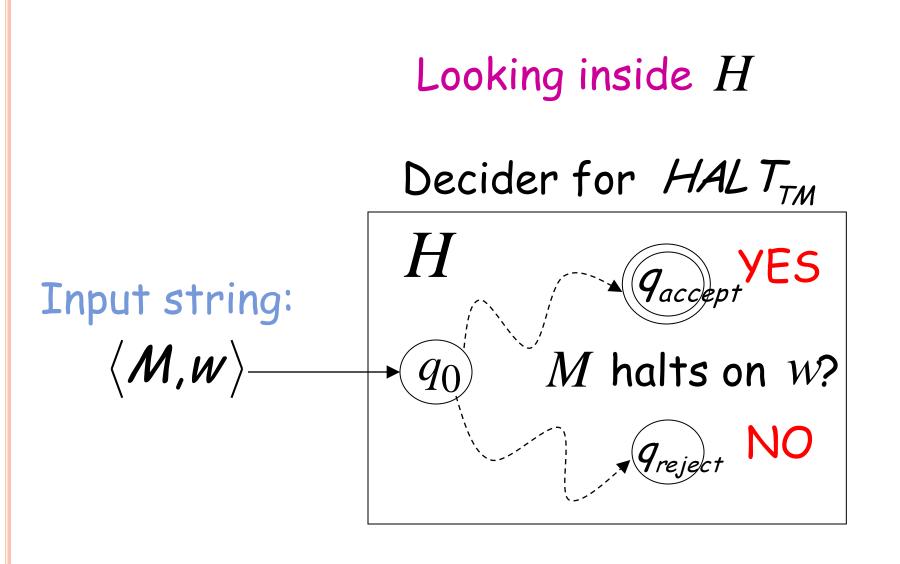
Theorem: *HALT_{TM}* is undecidable (The halting problem is unsolvable)

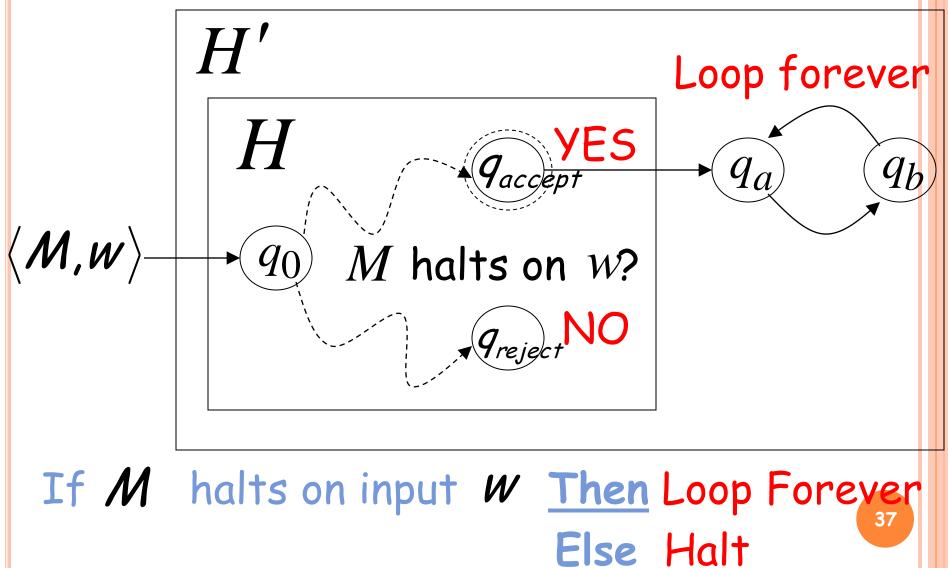
Proof: **Basic idea:** Assume for contradiction that the halting problem is decidable; we will obtain a contradiction using a diagonilization technique

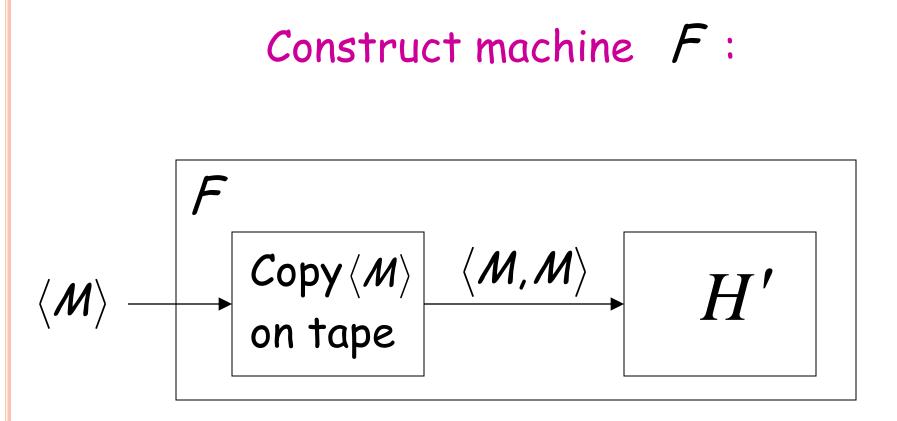
34

Suppose that $HALT_{TM}$ is decidable





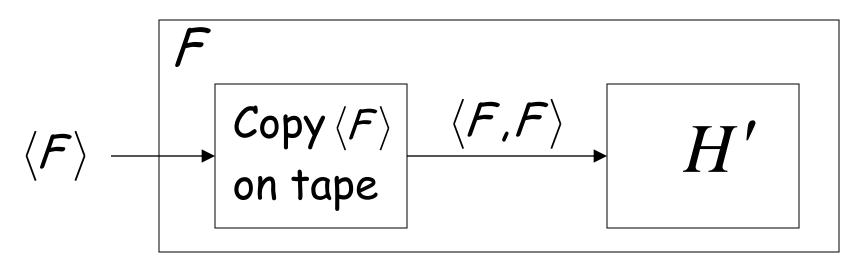




If M halts on input $\langle M \rangle$ <u>Then</u> loop forever <u>Else</u> halt

38

Run F with input itself

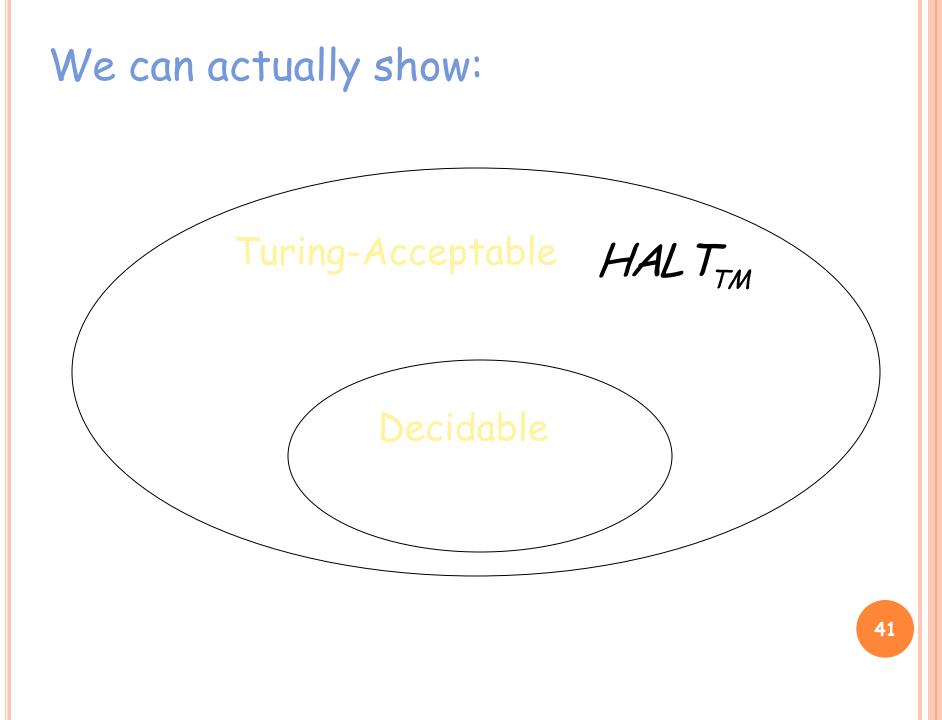


If F halts on input $\langle F \rangle$ <u>Then</u> F loops forever on input $\langle F \rangle$ <u>Else</u> F halts on input $\langle F \rangle$

39

OF PR

CONTRADICTION!!!



HAL T_{TM} is Turing-Acceptable

Turing machine that accepts $HALT_{TM}$:

